
 
 
 
 
 
 
 
 
 
 

FCN Working Paper No. 22/2011 
 
 

Multi-Commodity Real Options Analysis of Power 
Plant Investments: Discounting Endogenous  

Risk Structures 
 
 

Wilko Rohlfs and Reinhard Madlener 
 
 
 

December 2011 
Revised July 2012 

 

Institute for Future Energy Consumer 
Needs and Behavior (FCN) 

 
School of Business and Economics / E.ON ERC 



 
 
 
FCN Working Paper No. 22/2011 
 
Multi-Commodity Real Options Analysis of Power Plant Investments:  
Discounting Endogenous Risk Structures 
 
December 2011, revised July 2012 
 
 
Authors’ addresses: 
 
Wilko Rohlfs 
Chair of Heat and Mass Transfer 
Faculty of Mechanical Engineering 
RWTH Aachen University 
Eilfschornsteinstrasse 16  
52056 Aachen, Germany 
E-mail: rohlfs@wsa.rwth-aachen.de 
 
 
Reinhard Madlener 
Institute for Future Energy Consumer Needs and Behavior (FCN) 
School of Business and Economics / E.ON Energy Research Center 
RWTH Aachen University 
Mathieustrasse 10 
52074 Aachen, Germany 
E-mail: RMadlener@eonerc.rwth-aachen.de 
 

Publisher: Prof. Dr. Reinhard Madlener 
Chair of Energy Economics and Management 
Director, Institute for Future Energy Consumer Needs and Behavior (FCN)  
E.ON Energy Research Center (E.ON ERC) 
RWTH Aachen University 
Mathieustrasse 10, 52074 Aachen, Germany 
Phone: +49 (0) 241-80 49820 
Fax: +49 (0) 241-80 49829 
Web: www.eonerc.rwth-aachen.de/fcn 
E-mail: post_fcn@eonerc.rwth-aachen.de 



Multi-commodity real options analysis of power plant

investments: Discounting endogenous risk structures

Wilko Rohlfs

Institute of Heat and Mass Transfer, Faculty of Mechanical Engineering,

RWTH Aachen University, Eilfschornsteinstrsse 16, 52056 Aachen, Germany

Reinhard Madlener1

Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business

and Economics / E.ON Energy Research Center, RWTH Aachen University,

Mathieustrasse 10, 52074 Aachen, Germany

December 2011, revised July 2012

1 Corresponding author. Tel: +49-241-80 49 820; Fax: +49-241-80 49 829.

E-mail: RMadlener@eonerc.rwth-aachen.de (R. Madlener).



Abstract

The value of power generation technologies can be derived from the investment cost, the plant’s

expected lifetime, and the discounted cash-flows, the latter of which typically are a combination

of several underlyings, such as the price of fuel, electricity, and CO2. To determine this value,

most studies assume predefined, uniform, and constant discount rates, irrespective of the fact

that the specific risk strongly varies with the technology concerned and also over time. In order

to endogenize the technology-specific risk, we develop a new model that explicitly accounts for

the (likewise technology-specific) combination of the underlyings. More specifically, we use a

multivariate binomial tree real options approach for analyzing the value of different power plants

(gas-fired and coal-fired, with and without carbon capture and storage (CCS); hydro; wind;

photovoltaics) and for taking into account technical change. We further investigate the influence

of alternative CO2 policies on the plants’ values, modeling the CO2 price in three different ways

and for three different carbon price levels (5, 25, 45e/tCO2): (1) as a stochastic process (Geometric

Brownian Motion), reflecting the price development in the Emissions Trading Scheme of the

European Union (EU ETS); (2) as a (constrained) stochastic process with a price floor, and (3)

as a deterministic carbon tax. From the model application, using data from German exchange-

based markets and a much-cited pilot study on future energy strategies and scenarios in Germany,

we find a strong preference for hard-coal power plants in the low CO2 price scenario (P2015 = e5)

and a low value of waiting, irrespective of the CO2 price policy assumed. In the case of the

moderate CO2 price scenario (P2015 = e25), the value of waiting is much higher for the CO2

permits with a price floor and the CO2 tax policy, leading to a dominance of the CCS power

plants. In contrast, for the simulated EU ETS market, the conventional fossil fuel-fired power

plants dominate the other technologies. In the high CO2 price scenario (P2015 = e45), the value

of waiting only delays the investment decision in the case of the floored CO2 permit prices. For

the two other policies, the model predicts an immediate investment in CCS power plants once

the CCS technology becomes commercially available in 2020.

Key words: Real options, CAPM, multivariate binomial tree, carbon tax, energy technology

choice, endogenous discount rate



1 Introduction

Increasing volatility of prices, technical change, and regulatory uncertainty all render in-

vestments in power generation assets more and more risky, calling for stochastic model

approaches to support investment decisions. Therefore, the literature on stochastic mod-

els and their application to the energy sector has flourished in recent years. Reinelt and

Keith (2007), for instance, investigate the cost of regulatory uncertainty in carbon capture

retrofit investments, based on a two-dimensional model (volatile natural gas price, uncer-

tain carbon regulations) for different coal-fired power plants using Bellman’s Principle of

Optimality (Bellman, 1957). However, such a separated comparison of alternative invest-

ment options is insufficient and remains silent about both the optimal timing of investment

and the optimal technology mix.

Real options (RO) models (Black and Scholes, 1973; Dixit and Pindyck, 1994) are

attractive in this respect and also account for the value of waiting (McDonald and Siegel,

1986). Therefore, it is not very surprising that in recent years RO models have been

increasingly applied also in the energy literature, even though most applications have only

dealt with a single stochastic variable at a time. However, multi-dimensional RO models

(see McDonald and Siegel, 1986; Boyle et al., 1989) that account for several stochastic

processes are still rare and usually neither account for multiple technology choices nor for

risk-adjusted discounting caused by the correlation of the underlying assets concerned. In

Siddiqui and Fleten (2010), a two-dimensional RO problem is solved in order to address the

question of how a staged R&D program could be optimally implemented under uncertain

electricity prices and operating cost. In Fleten and Näsäkkälä (2010), a similar approach

is applied, modeling the spark spread and the electricity price stochastically. Whereas for

the two-dimensional problem the option value can be determined analytically, for higher-

dimensional problems only an expression for the threshold value can be found (Rohlfs and

Madlener, 2011). In order to overcome this problem, Gahungu and Smeers (2009) suggest

a Monte Carlo approach, allowing at least for a numerical approximation of the option

value. Abadie et al. (2010, 2011) apply a three-dimensional RO model based on a binomial
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lattice in order to determine the optimal timing of abandonment of a coal-fired power

plant in the European Union. A general approach to model the managerial flexibility

inherent in multiple real options with multiple sources of risk is addressed in Kienzle and

Andersson (2009). In their model application, two combined heat and power (CHP) plants

are compared with each other, using a three-asset Monte Carlo simulation.

In this paper, we also model the situation of an investor facing the choice between

different power plant technologies and having the additional flexibility to postpone the

investment decision. Because all technological options considered generate electricity (or

eventually additional heat or process steam), the future returns gained from such invest-

ments are determined by a few basic underlyings, such as the fuel, electricity, and carbon

prices. Thereby, the economic risk of these prospective returns depends on the uncertainty

of the single underlyings as well as on their combination, which is technology-specific.

Therefore, we aim in our study to endogenize the risk treatment, e.g. by applying an

endogenous discount rate. This endogenous risk treatment is afflicted with two main ob-

stacles.

First, under the assumption of time-constant parameters (e.g. growth rate and volatil-

ity) for the stochastic processes of the underlyings, the risk of the prospective returns

becomes time-dependent when constant ratios between input and output quantities are

prescribed. This results in a time-dependency of the optimal technology. In order to

perform the desired dynamic optimization of the investment strategy, the RO approach,

which incorporates the value of waiting, is well suited for the problem at hand. Never-

theless, multi-asset option models in general assume that, once the investment has been

made, the share of the different underlyings (assets) remains constant over time, leading to

a time-invariant solution. This implies that neither the growth rate nor the volatility of the

portfolio of underlyings must vary over time. However, due to the different performance

of the underlyings, in reality, the portfolio would have to be readjusted over time, as the

share of the well-performing assets in the portfolio increases, while the share of the others

decreases. In the case of energy conversion (e.g. electricity generation) plants, the choice of

the applied technology defines the input and output quantities as well as the ratio between

2



them for the entire lifetime of the plant. With such a constant ratio between the input

and output quantities, however, the influence of the resulting incoming and outgoing cash

flows (e.g. for fuel, electricity, and CO2 permits) on the prospective returns is directly

coupled to the ratio between the asset prices. Due to unequal growth rates predicted for

the prospective prices of the assets, a strong time-dependence in the ratio between the

various input and output cash flows can be expected.

Second, a further main obstacle in the decision-making process is the evaluation of

uncertain cash flows gained at different times. Due to the strong correlation of subsequent

returns, a separate valuation of the resulting cash flows remains inaccurate. This problem

can be illustrated by the following example. Let us suppose an uncertain cash flow in

the first period that takes a value of either 100 or 200 (both, for simplicity, with the same

probability). Due to the associated uncertainty, a risk premium would be required, reducing

the expected utility below the utility of the average cash flow of 150. In the next period,

the same cash flow may be gained but, due to the correlation between the two periods, the

cash flow would be 100 if the cash flow of the previous period was 200, and vice versa. A

segregated treatment of this period would again require a risk premium. However, if the

cash flows of both periods are evaluated jointly, the associated risk vanishes. This example

illustrates that discounting methods that combine risk- and time-discounting cannot be

applied when cash flows with strong correlations between different periods are considered.

Therefore, in our study, a segregated risk- and time- discounting method is applied.

The original contribution of this paper is threefold:

(1) From a modeling perspective, we present an RO-based approach, which allows for

determining the optimal technology as well as the optimal time to invest for the case that

the investor commits himself with the installed plant to a fixed ratio between inputs and

outputs. This approach, because of its mathematical complexity, loses analytical tractabil-

ity and requires a mixed binomial lattice and Monte Carlo approach with a segregated

time- and risk-discounting. This discounting strategy allows to account for the technology-

specific economic risk.

(2) From the investor’s perspective, the application of the proposed model gives in-
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sights into an optimized decision process when multiple technological options exist and

replications for the underlying assets cannot be performed. Specifically, we evaluate the

option value of investing in different types of power plants (gas-fired and coal-fired, with

and without carbon capture and storage (CCS); hydro; onshore and offshore wind; pho-

tovoltaics), also taking into account the impact of technical change, which manifests itself

by decreasing investment and operation and maintenance (O&M) cost as well as energy

efficiency gains.

(3) From a political perspective, the model provides new insights into the effect of

various CO2 permit auctioning strategies. Thereby, regulatory uncertainty concerning

climate change policies is addressed by modeling the CO2 price in three different ways:

(a) as an unconstrained stochastic process, (b) as a constrained stochastic process with a

floor price, and (c) as a deterministic carbon tax. We show how a CO2 price floor in the

auctioning process affects the investment decision. Surprisingly, we find an unexpected

extension of the delay time, which, however, can be explained by the elimination of price

paths having a negative effect on the value of waiting.

The remainder of this paper is organized as follows: In Section 2 the RO model with the

segregated discounting is described. Section 3 summarizes the economic and technical data

used for the model application. Section 4 presents the results obtained, and the impact of

varying the CO2 price. Section 5 concludes and presents some political implications.

2 The model

The present study aims at determining the optimal technology to invest, as well as the

optimal time to invest, for the case that an electric utility has the choice of building a

new power generation unit. The concept of the model is presented in Fig. 1. The core

of this model is a multi-dimensional real options approach (more precisely: an option to

wait, see McDonald and Siegel, 1986), where the value of all technological options is based

on multiple underlying assets (fuel price, electricity price, CO2 price), following correlated

stochastic processes.
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In order to allow for a more realistic approach and thus a more complicated modeling

(e.g. technological innovation, floored prices), we make use of the multi-dimensional lattice

method (for the one-dimensional case introduced by Cox, Ross, and Rubinstein, 1979,

hereafter CRR, and explained in subsection 2.2). Starting with a known state at t = 0

Underlying assets:  - Stochastic model of electricity, coal, gas, CO2, and benchmark prices
   - Pi(t) [αi, σi, ρi]

Technological data:  - Different technological options (hard coal, gas, wind, hydro, ...)
   - Innovation leads to increased conversion efficiency and reduced
     investment cost. 

Real options model:
- Option to wait (McDonald, 1982)
- Multi-dimensional lattice approach

Exercising value (NPV model):
- Net Present Value
- Multi-dimensional Monte Carlo
  approach

V
NPV

Time- and risk-adjusted cash-flow evaluation:
- Benchmark time-discounting
- Risk aversion by utility function

t = 0

fuel

CO2

electricity

time [a]

pr
ic

e 
[€

]

time

Figure 1: Schematic model description

with the deterministic prices Pi(t = 0), the multi-dimensional tree is constructed, thereby

accounting for the different growth rates, volatilities and correlations between all underlying

assets. Rolling up the decision tree, the investor is given the opportunity to invest in one

of the various power plants or to delay the investment decision by one period, depending

on the exercising value and the value of waiting. Formally, this yields an option value,

V (t), of the form

V (t) = max(NPVi, V (t+ 1)discounted, 0). (1)
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The exercising value of the option is given by the NPV of the best-performing power plant.

This exercising value of all technologies at each node is calculated using the same stochastic

processes of the underlying assets by way of the Monte Carlo simulation technique (see

subsection 2.3). The time- and risk-adjusted cash flow evaluation, grounded on benchmark

time-discounting and an approach for risk-discounting based on a utility function, builds

the bridge between the two models.

2.1 Stochastic price path modeling

In this study, m stochastic price processes are used to model the various price paths and

the path of the benchmark asset. We assume that all those paths can be described by

simple Geometric Brownian Motions, with constant growth rates αi and volatilities σi,

yielding
dPi(t)

Pi(t)
= αidt+ σidZi, (2)

where dZi are increments of correlated Gauss-Wiener processes, so that E[dZidZj] =

ρijdt, i �= j, and ρij denotes the correlation between process i and process j.

2.2 Construction of the n-dimensional lattice

For the development of the multi-dimensional lattice, we apply the commonly used method

of logarithmic prices (see Abadie and Chamorro, 2008; Abadie et al., 2011) but in contrast

to these references, we remain in a risky world. Hence we start with a logarithmic trans-

formation of the price variables, such that

xi(t) ≡ lnPi(t). (3)

Applying Itô’s Lemma for the dynamic processes, it follows from Eq. (2) that

dxi(t) = νidt+ σidZi(t). (4)
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For a discrete time step, Δt, the first momentum of Eq. (4) is given by

E [Δxi] = αiΔt (5)

and the second momentum by

E
[
Δx2

i

]
= σ2

iΔt + α2
i (Δt)2. (6)

For the correlation of two processes, the following condition must hold:

E [(Δxi − αi)(Δxj − αj)] = ρijσiσjΔt. (7)

From Eqs. (5)-(7) two conditions for each asset (2m) and one correlation for each as-

set combination [m(m − 1)/2] result. The number of nodes from the multi-dimensional

lattice approach is given by 2m, leading to the same number of unknown probabilities.

Additionally, the values of Δxi are unknown. Overall, we have (2m + m) unknowns and

(m2 +3m)/2 equations plus the trivial assumption that the sum of all probabilities equals

unity (
∑

pi = 1).

To construct the nodes of the lattice, different options exist. One possible and common

way is to impose the discrete increments (Δxi) and to calculate the corresponding prob-

abilities. For a one-dimensional lattice, this method goes back to the CRR model (Cox

et al., 1979). This procedure can also be applied for the case of multi-dimensional lattices

(for the two-dimensional case, see Boyle et al., 1989). However, the method may lead to

negative probabilities when a high correlation between assets exists. In order to overcome

this inconvenience, various approaches have been proposed in the literature. Gamba and

Trigeorgis (2007), for instance, use a log-transformed binomial lattice approach, but still

face the (reduced) problem of negative probabilities. To overcome this imprecision, we

first analyze their cause in the lattice approximation. To illustrate this, Fig. 2 depicts

iso-probability contours for two correlated assets with various correlation coefficients. If

the nodes of the binomial tree form an orthogonal grid, as in the CRR model (upper three
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Figure 2: Orthogonal vs. non-orthogonal grid in the case of different correlation coefficients

graphs), the discretization of the probability distribution becomes imprecise for higher

correlation coefficients. For perfectly correlated assets (ρ = 1), e.g., when the probability

distribution becomes quasi one-dimensional (with a new axis orientation), a rectangular

discretization definitely fails to reproduce the desired distribution. Therefore, we apply

a method proposed by Rubinstein (1994), constructing a non-rectangular tree for m dif-

ferent assets. In this method, the discrete increments (Δxi) are rotated and translated

in a way such that their orientation matches with the one of the correlated, non-centered

distribution.

To practically determine the nodes of the non-rectangular tree, we first transform the

yearly variances and the growth rates to the desired width of the time step Δt according

to σi,Δt = σi,1

√
Δt and αi,Δt = μi,1 · t. Thereafter, we construct the covariance matrix

Cov(Xi, Xj) with given variances and correlation coefficients. As this is a symmetrical

positive-definite matrix, Cholesky decomposition can be applied, yielding a lower-triangular

matrix Lij . Multiplying a vector containing all node directions (with the length of unity in

each direction) by this lower-triangular matrix and adding the corresponding growth rate
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to each node, we receive a matrix that contains again the vectors of all node directions,

but this time adjusted in such a way that all nodes are afflicted with an equal probability

of 1/2m.

2.3 Evaluating the node-specific option value

In options theory, the evaluation of the option value begins at the end branches of the

binomial tree when exercising the option (roll-up). In the case of real options, the exercising

value at the specific node is commonly given by the NPV of the investment. As we do not

retain the classical NPV approach (where time and risk are coupled), and instead make use

of benchmark time-discounting, combined with utility functions for an enhanced treatment

of risk structures, the utility value and not the NPV is used for the evaluation. With

multiple investment options available, the technology with the highest utility is chosen. If

all utilities are negative at the strike date, the option will expire with a value of zero (no

investment). For the preceding nodes, the additional option of postponing the investment

decision arises, creating a value of waiting. The value of waiting is the utility of the time-

discounted NPV of the 2m subsequent nodes. Note that the utility of the time-discounted

NPV does not confirm with the option value of the subsequent nodes, as the utility cannot

directly be time-discounted. Therefore, the option value can formally be written as

V (t) = max

{
U [NPV (i, t)], U

[
1

2m

2m∑
i=1

(
βU−1(V (t+ 1))

)]
, 0

}
, (8)

where V (t) represents the option value at the current node. For time-discounting, the

deflator β is introduced, which results from an additional stochastic process (also correlated

to the basic underlying assets), representing the evolution of the market value of a well-

diversified portfolio (see subsection 2.5 for details).
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2.4 Computing the node-specific exercising value

At each node in time td (d indicates the time of decision-making), the expected returns of

all available investment opportunities have to be estimated, based on the actual prices at

the specific node. As all prices are assumed to follow stochastic processes, the resulting

exercising value is stochastically distributed, displaying the riskiness (or risk structure) of

the proposed investment. In order to account for the flexibility to abandon the operation

of the power plant in cases where the cost of the input quantities exceeds the revenues of

the outputs, we limit the total loss of each period to the O&M cost, CO&M. Formally, this

yields

NPV (j, td) =

td+LT (j)∫
td

β(t∗)CF (t∗)dt∗, 0− I(j, td)

=

td+LT (j)∫
td

β(t∗)
∑
i

{max[ci(j, td)Pi(t
∗), CO&M]} dt∗ − I(j, td),

(9)

where Pi(t
∗) is the price of the commodity i, which again follows a Geometric Brownian

Motion and factor ci(j, td) denotes the weighting of the price, dependent on the specific

power plant j and on the date when the power plant is built, td (thus allowing for technical

change). For example, the weighting factors of a conventional power plant built at td =

2015 are cel = 2.5 · 106 MWh/a, ccoal = −6.3 · 105 tcoal/a, cCO2 = −1.6 · 106 tCO2/a, cgas =

0m3/a, and cO&M = −1.3 · 107 (negative values imply that the corresponding commodity

price causes costs instead of revenues). The variable I(j, td) denotes the investment cost

of the power plant j at time td. Integrating the instantaneous cash flows over lifetime

LT (i) additionally allows to account for technology-dependent plant lifetimes. Due to the

temporal distribution of the cash flows, an adequate time-discounting is required, for which

the deflator β is again used. Further information regarding the discounting is provided in

subsection 2.5 below.

Due to the lack of an analytical tractability of Eq. (9), the Monte Carlo Simulation
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technique is used to determine the distribution of the NPV, evaluating the cash flow at

time t by the prevailing prices of the respective simulation path.

2.5 Time- and risk-discounting

In the presented NPV approach for the exercising value as well as in the real options

approach itself, the cash flows and option values have to be discounted in order to account

for their temporal character and their uncertainty. This implies that cash flows gained at

different times have to be somehow combined. By doing so, it is assumed that an investor

generally prefers earlier cash flows, which can then either be used for consumption or be

reinvested. Additionally, the risk adjustment should account for the fact that the economic

risk varies with the applied technology due to the different combinations of the underlying

assets. Therefore, the risk evaluation constitutes one of the main obstacles in this study.

The desired method of discounting has to fulfill the following requirements:

1. Reflecting the project or power plant’s specific risk structure;

2. Consistency between the NPV and the RO approach;

3. From the RO approach: The discounting must be higher than the average growth

rate, as otherwise the investment is always made at tend;

Standard asset pricing models, such as for example the CAPM (see Sharpe, 1964; Lint-

ner, 1965), perform a segregated treatment of the cash flows of different periods. Following

the Fisher separation theorem, this discounting procedure is well-suited for investors able

to diversify their capital. However, although electric utilities try to optimize their power

plant portfolio in terms of risk and return, they usually remain in the field of their core

competence in order to make profits. Therefore, we build the discounting method upon

a different basic principle. Specifically, we assume that the shareholders of the electric

utility in general request an equal or better performance of the proposed project than they

could achieve by investing in another benchmark project or share. By accounting for the
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correlation between the benchmark share and the project, a discount factor β (deflator)

can be constructed according to

β =
PM(τ)

PM(t)
, (10)

where PM(τ) denotes the price of the market-based benchmark share at the reference point

in time and PM(t) is the respective price at the actual time. In our model application, we

exemplarily focus on an investment decision in the European area, which is why we use

the German stock market index DAX as the benchmark asset. As the average growth rate

of the investment surpasses in many cases the stock market growth, the third requirement

does not hold, leading to a maximum (infinite) delay of the investment decision. Therefore,

we further request an additional rate of return r, expanding the deflator to

β =
PM(τ)

PM(t)
· 1

(1 + r)t−τ
. (11)

Note that this extension of the deflator must be interpreted as a time preference of the

investor and not as a risk premium.

The time-discounting method described above is applied to evaluate the exercising value

by way of the Monte Carlo simulation technique. This leads, for each simulated path, to

an expected value and thus to a distribution displaying the associated risk structure of the

project. To reduce this distribution to a single, risk-adjusted expected value, as is needed

in the real options approach, a risk-adequate evaluation of this distribution is required.

Following the basic theory, risk aversion can be explained by concave utility functions (von

von Neumann and Morgenstern, 1944), which transform the nominal cash flows into utility

values. Due to the concave shape, the marginal gain of utility decreases with increasing

nominal value. The nominal value of the average utility is, therefore, always less than

the average nominal value itself (as shown in Fig. 3). Due to the fact that also negative

exercising values may occur, the utility function has to be defined for positive and for

negative values. One possible and adequate shape for the utility function is given by a

12



U [x]

x
risk premium

x20 x1

U [x1]

U [x2]
U

risk premium

x4x3

U [x4]

U [x3]

U

Figure 3: Discounting by means of a utility function

quadratic function, according to

U(x) = a · (x+ c)− b · (x+ c)2. (12)

In this case, the constants a, b, and c have to be adjusted to express the investor’s

attitude towards risk. The constant b represents the risk aversion of the investor and

the constant c shifts the utility function, allowing for the evaluation of negative values.

Note that while the marginal utility decreases with increasing nominal value, the marginal

negative utility increases for higher losses, also indicating risk-averse behavior. This implies

that the investor would prefer a certain loss of, say, 75 units compared to an uncertain

loss of either 50 or 100 units. Note that this assumption is contrary to the S-shaped

utility function from prospect theory (see Kahneman and Tversky, 1979), predicting in the

negative branch a risk-loving investor (convex shape) as well as a saturation for gains and

losses. However, in our analysis we decided to rule out negative saturation, assuming that
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the maximal loss of the proposed investment does not exceed the funds of the investor.

In the RO model, the option to wait includes the discounted option value of the

subsequent time step, (t + 1). Keeping a consistent separation between time- and risk-

discounting, the average utility at time t, U [x(t)], is given by the utility of the discounted

values of the underlyings at time (t+ 1), i.e.

U [x(t)] = U [β · x(t + 1)]. (13)

Note that this equation implies the discounting of the expected values with the deflator β

before applying the utility function and before averaging. The direct application of this

equation requires that all expected values obtained from the Monte Carlo simulation of

(t + 1) have to be stored, leading to high computational cost. A solution to this problem

is to factor out the deflator β, leading to

U [x(t)] = β∗ · U [x(t + 1)], (14)

where U [x(t + 1)] is the only variable known from the previous time step and β∗ a modified

deflator. Unfortunately, the sum of the linear and the quadratic part in Eq. (12) does not

allow for such a direct separation approach. Therefore, it is necessary to store the average

linear value x as well as the average quadratic value x2, which can be discounted separately

according to

x(t) = β · x(t+ 1),

x2(t) = β2 · x2(t+ 1).
(15)

2.6 Numerical simulation

All simulations in this section were performed with the same temporal discretization. For

the real options model, only a limited number of time steps (N = 7) with a step size of
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ΔtRO = 5 a has been used (starting from 2015 and ending at 2050). Due to the strongly

increasing computational effort with the number of steps, seven steps were found to be still

feasible for simulations of five-dimensional options pricing. The step size for evaluating

the exercising value at each node by the Monte Carlo NPV approach is ΔtNPV = 1 a.

Because of the large number of resulting nodes (32,768 at the last time step1, the number

of price paths in the Monte Carlo simulation has been limited to n = 100 for all time

steps except the first and the second ones, where n = 10, 000 and n = 1000, respectively.

The computation time needed is up to 25 minutes in a non-parallelized simulation on a

quad core computer (2.4GHz) for the case that all nine technological options (see Table

2) are taken into account. In order to evaluate the accuracy of the results, the complete

simulation has been performed ten times. Therefore, the mean, minimum, and maximum

option values are presented for each parameter variation in turn. For the time-discounting,

a markup of 4% on the return of the benchmark asset has been assumed for all technologies

considered.

3 Data

3.1 Economic data

The economic and market boundary conditions are, on the one hand, very important and,

on the other hand, at the same time highly controversial. Because of the power plant’s

long life-span, long-run projections for the underlying assets are necessary. As we consider

the latest investment decision in 2050 (with the technological data provided in subsection

3.2) and a maximal lifetime of 30 years (hydro power), price projections until 2080 are

required.

In this study, the parameter set used is built upon two different sources: On the one

hand, historical price data provided by the European Energy Exchange (EEX) for elec-

tricity, coal, and natural gas as well as the EU ETS emission allowances and, on the other

1Note that the 32,768 nodes at the end of the tree represent 34 billion (!) possible price paths.
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Table 1: Economic data used

Parameter Pi,0 [e] αi σi ρi,el ρi,coal ρi,gas ρi,CO2 ρi,M
P a
el 60 4.00% 4.00% 1.000 0.608 0.702 0.518 0.140

P b
coal 69 4.18% 7.09% 0.608 1.000 0.603 0.250 0.260

P c
gas 5.5 4.03% 6.70% 0.702 0.603 1.000 0.273 0.150

P d
CO2

20 4.14% 7.07% 0.518 0.250 0.273 1.000 0.201
P e
M 1 2.00% 2.00% 0.140 0.260 0.150 0.201 1.000

Notes: abase-load futures traded at the EEX (F1BY, July 1, 2002 - February 2, 2012); bcoal futures traded
at the EEX (FT4Y, May 2, 2006 - January 5, 2012); cnatural gas futures traded at the EEX (G0BY, July
2, 2007 - January 5, 2012); dEUA price (F2PE & F2EA, October 4, 2005 - January 5, 2012) at the EEX.
eGerman equity index (DAX, March 2, 1992 - January 5, 2012).

hand, the German stock market index DAX for representing the benchmark asset, have

been used to determine the correlation coefficients between the assets. For the other two

important parameters, the growth rate αi and the volatility σi, in a first go we applied

the maximum likelihood method (Hogg and Craig, 1978; Hull, 2008) to the previously

mentioned data. Expectedly, the parameters estimated from the historical data of the last

eight to ten years lead to implausible results if applied over a projection period of 70 years.

Mainly, this is due to the large difference in growth rates and also the high volatilities.

Therefore, we calculated the missing quantities from the data provided in the German

“Pilot Study 2010” (“Leitstudie 2010” Nitsch et al., 2010). In their study, three different

scenarios (high, moderate, and low) with price projections for electricity, coal, gas, and

emission allowances, have been proposed. For the growth rate, we used the price develop-

ment of the moderate scenario. Note that the prices given in Nitsch et al. (2010) are in

real terms, based on the year 2007. In our model, nominal prices are used, discounted by

a benchmark asset. Therefore, the applied growth rates are increased by the growth rate

of the benchmark asset (αM = 2%). For the volatility, we assume that the variance of the

stochastic processes equals the variance found in the three different scenarios at t = 2050.

The values estimated are, compared to previous studies (e.g. Rohlfs and Madlener, 2011),

very low. Therefore, the proposed model application aims at investigating long-run price

uncertainties rather than short-run fluctuations. This assumption is in our opinion justifa-

ble through the long construction lead times of the power plants, rendering short-run price
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Table 2: Power plant data

Name, abbr., O&M cost, lifetime Unit 2015 2020 2030 2040 2050
Photovoltaics, PV, sp. production kWh/kWp,a 912 916 925 935 946
1% Investment/a, 20 a sp. invest. cost e/kWp 1903 1203 994 937 903

Onshore wind, ONW, av. utilization h/a 2100 2200 2350 2450 2550
4% Investment/a, 18 a sp. invest. cost e/kWp 1180 1030 980 940 900

Offshore wind, OFFW, av. utilization h/a 3500 3700 3800 3850 3900
5.5% Investment/a, 18 a sp. invest. cost e/kWp 2625 2100 1800 1500 1300

Hydro, HYDRO, av. utilization h/a 5494 5516 5541 5566 5593
5.5% Investment/a, 30 a sp. invest. cost e/kWp 2838 2961 3182 3323 3497

Hard coal, HC, efficiency − 47 50 51 51 51
2% Investment/a, 25 a av. utilization h/a 5000 5000 5000 5000 5000

sp. invest. cost e/kWp 1300 1300 1300 1300 1300
CO2 emissions kg/MWhel 656 620 609 609 609

Hard coal Integrated efficiency − – 52 54 54 54
Gasification Combined Cycle, av. utilization h/a – 5000 5000 5000 5000
HC-IGCC sp. invest. cost e/kWp – 1500 1500 1500 1500
2% Investment/a, 25 a CO2 emissions kg/MWhel – 598 577 577 577

Hard coal Integrated efficiency − – 43 45 45 45
Gasification Combined Cycle av. utilization h/a – 5000 5000 5000 5000
with CCS, HC-IGCC-CCS sp. invest. cost e/kWp – 2200 2200 2200 2200
2% Investment/a, 25 a CO2 emissions kg/MWhel – 107 102 102 102

Combined gas and steam efficiency, − 59 60 62 62 62
COGAS, av. utilization h/a 5000 5000 5000 5000 5000
2% Investment/a, 25 a sp. invest. cost e/kWp 700 700 700 700 700

CO2 emissions kg/MWhel 336 330 320 320 320

Combined gas and steam efficiency − – 50 52 52 52
with CCS, COGAS-CCS av. utilization h/a – 5000 5000 5000 5000
2% Investment/a, 25 a sp. invest. cost e/kWp – 1100 1100 1100 1100

CO2 emissions kg/MWhel – 59 57 57 57

Notes: Source: Nitsch et al. (2010)

variations rather unimportant for “strategic” investment decisions.

3.2 Specifications of the available technologies

The technological data used are taken from the German “Pilot Study 2010” (“Leitstudie

2010”, Nitsch et al., 2010), which provides projections for the required specifications till

2050. Table 2 summarizes the data used. In order to allow for a comparison of the different

technologies, we decided to base our analysis on the investment in a power plant with an

electricity generation capacity of 500MWel. Fuel consumption (if any) is calculated by the
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given net efficiency and the specific energy contents of the fuel (30MJ/t for hard coal and

8MJ/m3 for natural gas). The cost for transporting and storing CO2 (additionally occurring

for the CCS technologies with an absorption rate of 90%) is assumed to be 4 e/tCO2 (see

McCoy, 2008). For the escalation of the transporting and storing cost of CO2, the market

development has been assumed.

4 Results

This section presents results from applying the previously described model, examining the

option value as well as the optimal time to invest for the case that all available technologies

are treated separately and for the case that the various technologies compete. While

subsection 4.1 focuses on investment decisions for the baseline scenario, as described in

section 3, subsection 4.2 investigates the influence of a different CO2 permits price policy,

e.g. the influence of a price floor, a deterministic carbon tax, and a variation of the initial

CO2 price level.

4.1 Baseline scenario with investment options treated individu-

ally and combined

In the baseline scenario, the economic and technological data presented in Tables 1 and 2

are used. These data mainly agree with those presented in the German “Pilot Study 2010”

(“Leitstudie 2010”, Nitsch et al., 2010).

Individual option values: The option value for the case that each technology is evalu-

ated separately is shown in Table 3. Additionally to the mean value of the ten simulations

performed, the minimum and the maximum are given, showing that a sufficient number of

price paths has been simulated in the Monte Carlo simulations.

Next to the plain values, plots depicting the probability distribution of the investment

decision are presented (see Fig. 4), thereby giving more insights into the decision process.
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In general, those figures contain two different pieces of information: First, the eight bars,

each representing one time step, illustrate the distribution of the decisions made at the

specific time steps resulting from the various states of the world accounted for. Practically,

the bars are determined by the sum of the probabilities of each investment decision at each

node of the considered time step. For the photovoltaics power plant, for example, we find

a probability to end in a state of the world that is preferable to invest for t = 2050 of

about 44 percent. While the last node only allows the option to expire (“no investment”)

if the state of the world is not supporting a profitable investment, the preceding nodes may

suggest to wait. The second information given in those plots is the cumulative probability

of an investment in the specific power plant. Due to the fact that positive investment

decisions in preceding time steps preclude an investment at a later time (only one invest-

ment is possible), only nodes which follow a decision path of “waiting” may result in an

investment. Therefore, the cumulative probability can provide some insights regarding

the overall probability of having invested in the specific power plant. This probability is

estimated by a second Monte Carlo simulation that is based on the previously identified

decision tree.

The option value of the PV power plant of e19.8 million is the lowest one obtained. The

model suggests to wait at least until t = 2030, before the first time a positive investment

decision is proposed. Even until 2050, the probability to invest stays below 45 percent.

For the onshore and offshore wind power plants, the option value is much larger (e248

million and e311 million, respectively). Although the optimal time to invest is earlier and

the overall probability to invest higher for the onshore wind park (ONW) compared to

Table 3: Option value for the case of a segregated treatment of all technologies

Option value [million e] Option value [million e]

No. Power plant Mean Min Max No. Power plant Mean Min Max
1 PV 19.8 19.8 19.9 6 HC-IGCC 543.4 541.8 545.0
2 Onshore wind 248.5 247.7 249.1 7 HC-IGCC-CCS 359.8 358.0 361.0
3 Offshore wind 310.9 310.6 311.3 8 COGAS 544.8 543.2 547.0
4 Hydro 1066.2 1061.5 1072.0 9 COGAS-CCS 473.7 472.9 475.2
5 HC 636.7 633.0 639.4
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Figure 4: Distribution of the investment decision at the eight calculated nodes for the baseline
case (bars) and cumulative probability to invest (dashed lines).

the offshore wind park (OFFW), the option value is higher. Note that the prediction of

a longer waiting time for the offshore wind power plant is mainly caused by the strong

reduction of the specific cost of investment and the increasing average utilization rather
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than by the increase in the electricity price. This shows that the option value is not only

influenced by the assumed stochastic price paths but also by the technological innovation.

Interestingly, the cumulative probability of the offshore wind park is practically linearly

increasing, while the growth of the probability for the onshore wind park shows a saturation,

asymptotically reaching the value of 100 percent. The highest option value as well as an

immediate investment is proposed for the hydro power plant (HYDRO), caused by the high

ratio between average utilization and specific investment costs as well as due to the long

lifetime. Note that the decision process of all four technological options is only influenced

by two stochastic parameters, viz. the electricity price and the benchmark asset (here:

DAX) used for the stochastic discounting.

The option value of the five fossil-fired power plants is generally higher than the one

of the renewable energies (excluding the hydro power plant). For the HC and the CO-

GAS power plant, an immediate investment in 2015 is suggested. As the HG-IGCC and

the COGAS-CCS technologies are assumed to be available only from 2020 onwards, a

probability of zero in 2015 and a very high probability in 2020 are proposed.

Compared to the increasing probability to invest found for the renewable technologies,

the HC and the HC-IGCC power plant show a clearly decreasing probability over time

for the investment decision and an increase in the probability of waiting. However, at the

latest possible point in time to invest, a jump of the probability occurs. The HC-IGCC-

CCS technology is the only one for which a longer delay is predicted. Note that although

the instantaneous probability increases only slightly over time, a stronger increase in the

cumulative probability is found. At first sight, this behavior seems absurd. Why should the

cumulative probability rise while the instantaneous one does not? An explanation for this

behavior can be found in the multi-dimensionality of the problem. The threshold value,

which constitutes the border between the regimes of “investing” and “waiting”, defines a

complex surface in this multi-dimensional space. Therefore, the various price paths can

penetrate the region of “investing” from multiple directions. If the regime of “waiting”

is largely increased in one dimension (e.g. due to an increase in the CO2 permit price),

a penetration into the regime of “investing” by price paths can still occur from other
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directions (e.g. due to reducing fuel or increasing electricity prices), thus increasing the

cumulative probability to invest.

Overall, the model predicts high chances for investments into all fossil-fired power

plants, except for the HC-IGCC-CCS plant in the case where each technology is treated

separately. However, as a separate treatment of the technologies is rather academic (in

reality, the investor is normally faced with the opportunity to choose between different

alternative technologies), the next paragraph will provide insights into more realistic in-

vestment decisions, i.e. such where the various technologies actually compete with each

other.

Combinations of various technologies: For the case that the investor is facing the

additional option to choose between various technologies and the option to delay the in-

vestment decision, the simulation as well as the simulation results becomes more realistic

(and thus more valuable but, unfortunately also more complicated). In first simulations, a

dominant behavior of the hydro power plant is found. Because of the fact that the invest-

ment in new hydro power plant capacity is strongly limited by the few possible locations

remaining in Germany, we excluded this technology from the following analysis.

Table 4 summarizes the average, minimum, and maximum option values for three dif-

ferent sets of technologies.

The first set includes solely the new renewable energy technologies, namely photo-

voltaics, onshore, and offshore wind. The option value of this combination of e311 million

is equal to the value of the single technology “offshore wind”. Comparing Fig. 4(c) and

Fig. 5(a) shows that the offshore wind technology is dominant. Although higher prob-

Table 4: Relative option value for combinations of various technologies

Option value [million e]

Nos. Power plant Mean Min Max
1-3 Renewables except hydro 310.9 310.6 311.2
5-9 Conventionals 641.1 638.3 642.9
1-3,4-9 All except hydro 642.0 638.9 644.3
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Figure 5: Distribution of the investment decision at the seven calculated nodes for a non-volatile
CO2 price.

abilities of earlier investment in onshore wind technology were predicted in the previous

subsection, those investments are delayed by the offshore wind technology and its high

value of waiting.

The second set includes all fossil-fired power plants (hard coal- and gas-fired) and their

CCS options. The option value of e641 million is only about three million euros above the

value of the HC power plant, although its probability decreased to around 60 percent. In

contrast to the HC power plant, a delay of the investment decision in the first time step

is proposed. Nevertheless, the probability to invest at t = 2020 is more than 90 percent,

including a probability of nearly 20 percent for the COGAS-CCS option. Only in a very

few price constellations is the present value of the HC-IGCC-CCS or the COGAS-CCS

power plant the highest.

The last set includes all technological options, renewable energy, and fossil-fired power

plants. The option value as well as the distribution of the investment decision in the first

time steps does not differ from the previous set. Therefore, the additional consideration of

the renewable energy technologies in this case has no influence. However, the distribution
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of the best performing power plant at the latest time step (2050) is strongly determined

by the offshore wind power plant, although the first increase in the probability of adoption

is as late as in 2035. Compared to Fig. 5(b), the probability of the CCS options is further

reduced.

The probability of no investment in 2050 is reduced to less than five percent, indicating

that only a few price constellations exist where no technology has a positive present value.

A high probability of no investment would have shown that unrealistically low prices for

electricity have been assumed. Nevertheless, a substitution of the fossil-fired power plants

by the three renewable energy technologies considered here can be found from 2035 on-

wards. With a probability of more than 50 percent, the renewable energy technologies

strongly dominate the hard coal and both CCS technologies, but have no impact on the

investment decision today, following the nodes of a positive investment decision.

4.2 Influence of different CO2 price levels and policies

The proposed model does not only support decision-makers from industry to find optimal

strategies in terms of the technological choice and the waiting time, but it also yields new

insights into the effect of various CO2 trading schemes. This can help politicians in their

decision towards an optimized CO2 emission mitigation policy. In the following, we present

the influence of three different initial prices for CO2 permits in 2015 (e5, e25, e45) as

well as the influence of a price floor. For the variations of the initial CO2 permit price,

an additional adaptation of the electricity price is necessary. Due to the large share of

coal-fired power plants in the German energy mix (in 2010: 43%), we assume an electricity

price elasticity of 0.64 eel/eCO2
2.

The academic debate on price floors is still in its infancy, though the concept of price

floors has already found its way into policy and legislative proposals (Wood and Jotzo,

2011). One of the novel aspects is an annually increasing reserve price when permits

are auctioned. Such schemes have been proposed for various emission trading systems

2 Quotient of the input and output factors of a hard coal power plant (cel, cCO2), as presented in
subsection 2.4.
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Table 5: Option value for combined technologies

Volatile price Flooring CO2 tax

PCO2 Nos. Power plant Mean Min Max Mean Min Max Mean Min Max

e5
5-9 Conventionals 662 657 667 458 455 460 459 454 463
1-3,5-9 All (excl. hydro) 662 659 665 459 456 464 460 455 465

e25
5-9 Conventionals 641 638 643 393 391.9 395 405 404 407
1-3,5-9 All (excl. hydro) 642 639 644 417 416 418 427 425 428

e45
5-9 Conventionals 1036 1033 1038 722 720 724 1038 1036 1041
1-3,5-9 All (excl. hydro) 1037 1034 1041 735 734 736 1039 1037 1040

in the US (e.g. for California), Australia, or the UK (Brunner et al., 2009). However,

the European Commission mentioned that “a floor price may unduly interfere with the

market” (Gardner, 2009). Wood and Jotzo (2011) state that such arguments seem to

overlook the fact that permit markets are entirely caused by governmental regulations and

that a different design will just result in a different market outcome. They find that price

floors in emission trading systems can reduce excessive price volatility and provide better

management of cost uncertainty in the event of lower than expected abatement costs, which

in turn improves the predictability of returns and increases the expected returns for low-

emission investments. Nevertheless, such a minimum reserve price for auctioned permits

could only yield the desired effect in an international permit trading scheme if the share

of auctioning is large.

In the simulation results presented, the CO2 price floor is realized by way of introducing

a deterministic lower border, defined by

PCO2,border = PCO2(t = 2015) · exp(αCO2t). (16)

With the given lower border, the price of the emissions is the maximum of the stochastic

price and the deterministic price border or, formally, max(PCO2,stochastic, PCO2,border).

The option values found for the six different sets are summarized in Table 5. Comparing

the different initial prices for CO2 permits, a clear increase in the option value was found

for PCO2 = e45, whereas the option values for PCO2 = e5 and e25 are nearly equal. It

should be kept in mind, however, that the electricity price was varied accordingly to the
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Figure 6: Distribution of the investment decision at the seven calculated nodes for a non-volatile
CO2 price.

changing cost of electricity generation of a hard coal power plant. Therefore, a higher

permit price allows increasing option values in the case of switching to low carbon or

renewable technologies. As can be seen from Fig. 6, a clear preference for COGAS-
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CCS and HC-IGCC-CCS power plants exists at PCO2 = e45. The slight increase in the

option value from PCO2 = e25 to PCO2 = e5 comes along with a switch to the HC power

plant. The renewable energy technologies are found to be less supported by both a higher

and a lower price of CO2 permits. For PCO2 = e5, the wind offshore power plants are

dismissed by the HC power plant; for PCO2 = e45, by the CCS technologies. However,

due to investment decisions in early stages, the cumulative probability of investments in

renewable energy technologies remains zero.

The price flooring policy significantly decreases the option value in all cases due to

the increased average cost of CO2 permits. For PCO2 = e5, the decision process is not

significantly influenced by the change in policy, predicting an immediate investment in HC

power plants. For the other two initial prices, a strong influence of flooring is found. Con-

ventional technologies, such as hard coal and COGAS power plants, are nearly completely

displaced and a strong preference of the COGAS-CCS technology is found. The inevitable

period of waiting is caused by the fact that this technology is not available before the year

2020. Additionally, a share of 30 percent in the cumulative probability of offshore wind

power plants for PCO2 = e25 and 17 percent for PCO2 = e45 is predicted. However, a

strongly intensified probability of waiting is found for the medium and the higher CO2

price scenarios. Note that this is a rather unexpected behavior, as the floored CO2 permit

price was initially introduced with the intention to reduce uncertainty and to promote

faster investment decisions.

The policy of a carbon tax is investigated by using a deterministic carbon price.3 For

the low and the intermediate CO2 price scenarios (PCO2 = e5 and PCO2 = e25) the results

strongly agree with the ones obtained for the price flooring policy, both with regard to

the option value as well as in the probability distribution. Compared to the baseline case,

the option value is reduced by approximately 30 percent. This reduction is caused by the

probability of a very low CO2 price in the baseline scenario, which increases the value of

the HC power plant. For the high CO2 price scenario (PCO2 = e45), the option value

3As we make use of the same model without removing the CO2 price from the stochastic variables, we
impose a very low volatility of the CO2 price, e.g., σCO2 < 10−6.
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corresponds to the one of the baseline case, which results from an investment in either a

HC-IGCC-CCS or a COGAS-CCS power plant (in t = 2020). Due to the low CO2 price

paths, which are included in the baseline scenario, low probabilities for the HC and the

COGAS power plants are predicted. As such price paths do not exist in the case of a

carbon tax, the conventional fossil-fired power plants are completely displaced.

5 Conclusion and political implications

This paper introduces a new multi-dimensional, real options-based approach to evaluate

real-world investments in the energy sector. Such investment decisions are characterized

by the fact that the choice of the technology fixes the ratio between input and output

quantities over the entire lifetime of the power plant. However, caused by the different

developments of the relevant prices, the ratio between, for instance, the coal and the gas

price changes over time. Therefore, the expected cash flows and their uncertainty varies

over the project’s lifetime and is strongly dependent on the technology applied. The

presented real options approach accounts for this fixed ratio between inputs and outputs,

thereby requesting a separation between time- and risk-discounting.

The proposed model is applied in order to examine the option value and the probability

to invest in different technologies, such as photovoltaics, on- and offshore wind, hard coal-,

and gas-fired power plants. Forecasts for future prices and the technological progress

are adopted from a major case study (“Leitstudie 2010”) on future energy strategies and

scenarios in Germany. First investigations were conducted, where each power plant is

evaluated individually, showing high potentials for immediate investments in conventional

(hard coal- and gas-fired) power plants. Carbon dioxide capturing technologies are found

to have lower chances, especially for the hard coal IGCC technology. However, CCS, in

addition to combined gas and steam power plants, might become economically viable until

2020. For renewable energy technologies, the predicted option value is much lower than for

the conventional power plants. Due to the expected improvements in onshore and offshore

wind parks, a high value of waiting is predicted. In a second step, combined evaluations
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of the various technologies were performed. We find that renewable energy as well as CCS

technologies is largely displaced by the conventional hard coal and combined-cycle gas and

steam power plants, respectively.

In a further step, a variation of the initial (t = 2015) CO2 permit price (e5, e20, e45)

was performed and the influence of a price floor in the auctioning process of the permits

and a CO2 taxation was investigated. We are able to show that with a CO2 permit price of

e5 the conventional hard coal power plant is strongly preferred, whereas for a price of e45

the combined-cycle gas and steam power plant with CCS becomes the first choice. The

CO2 price flooring has a negative influence on the conventional power plants. However,

a much higher value of waiting was predicted by the model, whereas investments in CCS

technologies are further delayed. A CO2 taxation has a similar influence as the flooring for

the low and the intermediate CO2 price scenarios. For the high initial CO2 price of e45,

the tax policy significantly reduces the value of waiting compared to the flooring policy.

Before conducting this study, we were convinced that a CO2 price flooring reduces

the risk for investments in CCS power plants and, therefore, increases the chances of this

technology. Surprisingly, due to the elimination of the lower branch of the CO2 permit

price, a largely increased value of waiting was found, delaying the investment decision.

These findings indicate that a CO2 price flooring might not be the best opportunity to

support investments in fossil-fired power plants with CCS technology in the upcoming

years, which in our opinion is a very interesting result for policy-makers.
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Catholique de Louvain, Belgium.

Gamba, A. and Trigeorgis, L. (2007). An improved binomial lattice method for multi-

dimensional option problems. Applied Mathematical Finance, 14(5):453–475.

Gardner, S. (2009). Analysis: Europe - Little support for carbon floor price. Ethical

Corporation.

Hogg, R. V. and Craig, A. T. (1978). Introduction to Mathematical Statistics. Macmillan

Publishing, New York.

Hull, J. C. (2008). Options, Futures and other Derivatives. Pearson, Prentice Hall, New

Jersey, 7th edition.

Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decisions under

risk. Econometrica, 47(2):263–292.

Kienzle, F. and Andersson, G. (2009). Valuing investments in multi-energy generation

plants under uncertainty: A real options analysis. In Proceedings of the 10th IAEE

European Conference, Sep. 7-9, 2009, Vienna.

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in

stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1):13–

37.

McCoy, S. T. (2008). The Economics of CO2 Transport by Pipeline and Storage in Saline

Aquifers and Oil Reservoirs. PhD thesis, Carnegie Mellon University, Pittsburgh, PA.

McDonald, R. and Siegel, D. (1986). The value of waiting to invest. The Quarterly Journal

of Economics, 101(4):707–727.

31



Nitsch, J., Pregger, T., Scholz, Y., Naegler, T., Sterner, M., Gerhardt, N., von Oehsen, A.,

Carsten, P., Saint-Drenan, Y.-M., and Wenzel, B. (2010). Langfristszenarien und Strate-

gien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der
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